Faculté des sciences de base

INTRODUCTION AUX PROBABILITÉS Série 6

Exercice 1. On reprend l'exemple de la marche aléatoire simple sur \mathbb{Z} , i.e, on considère l'espace probabilisé $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$, où

$$\Omega = \{(s_0, s_1, \dots, s_n) : s_0 = 0 \text{ et } s_i - s_{i-1} \in \{-1, 1\} \text{ pour tout } i \in [1, n]\},$$

et $\mathbb{P}: \mathcal{P}(\Omega) \to [0,1]$ est la probabilité uniforme sur Ω . Pour chaque $i \in [1,n]$, on considère la variable aléatoire

$$X_i: \Omega \longrightarrow \mathbb{R}$$

 $(s_0, s_1, \dots, s_n) \longmapsto s_i - s_{i-1}.$

Montrer que X_1, \ldots, X_n sont des variables aléatoires (mutuellement) indépendantes, et de même loi donnée par

$$\mathbb{P}(X_i = 1) = \mathbb{P}(X_i = -1) = \frac{1}{2}.$$

Maintenant, considérons l'exemple de la marche aléatoire sur \mathbb{Z}^2 vu en Exercice 4 de la Série 5. Pour quel(s) choix de p_u, p_d, p_r, p_l obtient-on la probabilité uniforme sur l'ensemble des marches simples de longueur n sur \mathbb{Z}^2 ?

Exercice 2. On dit qu'une variable aléatoire X est discrète s'il existe un ensemble dénombrable S tel que $\mathbb{P}_X(S) = 1$. Montrer qu'il existe un espace probabilisé discret $(\Omega, \mathcal{F}, \mathbb{P})$ et une variable aléatoire \widehat{X} sur cet espace tels que \widehat{X} ait la même loi que X.

Étendre alors la preuve du Théorème 2.20 du cours aux variables aléatoires discrètes.

Exercice 3. Soit X une variable aléatoire. Montrer soigneusement que $\mathbb{P}_X(]-\infty,y]) \to 0$ lorsque $y \to -\infty$ et $\mathbb{P}(]-\infty,y]) \to 1$ lorsque $y \to \infty$. Cela complète la preuve du fait que $F_X: y \in \mathbb{R} \mapsto \mathbb{P}_X(]\infty,y])$ est une fonction de répartition.

Exercice 4. Soit X une variable aléatoire, définie sur un certain espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$, et soit F sa fonction de répartition. Montrer que quels que soient $x < y \in \mathbb{R}$, on a :

- 1. $\mathbb{P}(X < x) = F(x^{-}),$
- 2. $\mathbb{P}(X > x) = 1 F(x)$,
- 3. $\mathbb{P}(X \in (x, y)) = F(y^{-}) F(x),$
- 4. $\mathbb{P}(X = x) = F(x) F(x^{-}).$

Exercice 5. Soit X une variable aléatoire indépendante d'elle-même. Montrer qu'il existe $y_0 \in \mathbb{R}$ tel que $\mathbb{P}(X = y_0) = 1$. Indication : considérer la fonction de répartition $F : \mathbb{R} \to [0,1]$ de X, et remarquer que $F(y) \in \{0,1\}$ pour tout $y \in \mathbb{R}$.

Exercice 6. Reprenons l'exemple du graphe aléatoire d'Erdős-Rényi $G_{n,p}$ vu en cours.

- Montrer que lorsque p=1/2, on retrouve la probabilité uniforme sur l'ensemble des graphes à n sommets.
- On suppose que $p = p_n \le n^{-2}$. Montrer que la probabilité que G_{n,p_n} soit connexe tend vers zéro lorsque $n \to \infty$.

0.1 \star Pour le plaisir (non-examinable) \star

Exercice 7. Soit I un ensemble dénombrable, et soit $(X_i, \mathcal{T}_i)_{i \in I}$ une collection d'espaces topologiques à base dénombrable. Pour chaque $i \in I$, on note \mathcal{F}_i la tribu borélienne sur X_i (la tribu engendrée par l'ensemble des ouverts \mathcal{T}_i). Montrer que la tribu borélienne sur $(\prod_{i \in I} X_i, \mathcal{T}_{\Pi})$ (la tribu engendrée par l'ensemble des ouverts pour la topologie produit) coïncide avec la tribu produit \mathcal{F}_{Π} sur $\prod_{i \in I} X_i$.